Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China

Shu Chen, Xing-Chun Jiao*, Nan Gai, Xiao-Jie Li, Xiao-Chun Wang, Guo-Hui Lu, Hai-Tao Piao, Zhu Rao, Yong-Liang Yang

Key Laboratory of Ministry of Land and Resources for Eco-geochemistry, National 8 Research Center for Geoanalysis, Beijing, 100037, China

A R T I C L E I N F O

Article history:
Received 16 June 2015
Received in revised form 13 December 2015
Accepted 14 December 2015
Available online 30 December 2015

Keywords:
PFCs
Soil
Surface water
Groundwater
Rural areas
Eastern China

A B S T R A C T

Little research on perfluorinated compounds (PFCs) has been conducted in rural areas, although rural PFC sources are less complicated than in urban and industrial areas. To determine the levels and geographical distribution of 17 PFC compounds, samples of soil, surface water, and groundwater were collected from eight rural areas in eastern China. The total PFC concentrations (ΣPFCs) in soils ranged from 0.34 to 65.8 ng/g. ΣPFCs in surface waters ranged from 7.0 to 489 ng/L and ΣPFCs in groundwater ranged from 5.3 to 615 ng/L. Ratios of perfluoromonanoic acid/perfluorooctanoic acid (PFNA/PFOA), perfluorobutanoic acid/perfluorooctanoic acid (PFBA/PFOA), and perfluorheptanoic acid/perfluorooctanoic acid (PFHpA/PFOA) in rainwater increased due to the fluorochemical plants in the surrounding rural and urban areas, suggesting that atmospheric precipitation may carry PFCs and their precursors from the fluorochemical industrial area to the adjacent rural areas.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Perfluorinated compounds (PFCs) contain a carbon chain with fluorine atoms attached in place of hydrogen atoms and one or more functional groups attached to the end. Due to the strength of the carbon-fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation. PFCs have been widely used in industrial products and processes and in a wide variety of consumer products, such as stain-resistant textiles and fabrics, fire-fighting foam, agrochemicals, surface cleaners, and cosmetics (Prevedouros et al., 2006; Wang et al., 2010). Among these compounds, perfluorooctane sulfonate (PFOS, CF3(CF2)7SO3H) and perfluorooctanoic acid (PFOA, CF3(CF2)7COOH) have received more attention than other PFCs because of their ubiquity in the environment. PFCs are globally distributed, environmentally persistent, and bioaccumulative. Numerous publications outline the negative effects of PFCs on human health; these chemicals may be ingested with food and drinking water, thereby posing a human health threat (Domingo, 2012).

Large-scale production of PFCs in China began in 2003 following 3M’s 2002 global PFOA phase-out (Wang et al., 2010). The manufacturers of PFCs in China are mainly located in central and eastern China where concentrations of PFOA and PFOS in surface water have been reported, showing high levels in eastern China especially in the Yangtze River Delta region (Zhao et al., 2015; Wang et al., 2012, 2013; Lu et al., 2015). Pollution levels and spatial distributions of PFCs in soil and surface water are generally related to the extent of industrialization and urbanization (Wang et al., 2012). Therefore, most previous researches on PFCs in China have focused on major rivers and lakes in industrial and urban areas as well as PFC sources such as municipal wastewater treatment plants (WWTPs) and fluorochemical plants (Sun et al., 2011; L. Wang et al., 2011; Wei et al., 2013). Although PFCs in remote areas of China have been reported (Wang et al., 2014), research on distribution of PFCs in rural and agricultural areas is scarce. Relatively speaking, the rural areas may serve as the “background areas” for PFC pollution of urban areas. PFC sources in rural areas may simply originate from domestic and farming wastewater and from atmospheric precipitation. However, rural areas in close proximity to cities may be affected by urban industrial pollution. Along with general urbanization, small enterprises have been developing rapidly over the past two decades in rural parts of the country, especially in eastern China which is one of China’s most active economic regions. A
careful study of PFC distributions in rural areas in this region may reveal how urbanization and industrialization affect the PFC contamination levels in these areas and may help identify the sources that are transferring PFCs to the aquatic environment and soil. Thus, the aim of this study is to obtain information on the geographical distribution and characteristic PFC compositions in selected rural areas in eastern China which might help identifying PFC sources.

2. Material and methods

2.1. Reagents

Potassium salts of perfluorooctane sulphonate (PFOS), perfluorohexanesulfonate (PFHxS), perfluorobutanoic acid (PFBA), perfluoromonomeric acid (PFNA), perfluorooctanoic acid (PFOA), perfluorooctanoic acid (PFHpA), perfluorooctane sulfonate (PFOS), and perfluorobutanesulfonate (PFBS) were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Perfluorodecanoic acid (PFDoDA), perfluoroundecanoic acid (PFUnDA), perfluorooctadecanoic acid (PFDA), perfluorotetradecanoic acid (PFTeDA), perfluoroheptadecanoic acid (PFHxDA), perfluorooctadecanoic acid (PFDoDA), perfluoroxadecanoic acid (PFOcDA), perfluorodecane sulfonate (PFDS), and perfluorobutanesulfonate (PFBS) were purchased from Fluorochem Ltd. (Derbyshire, UK). 13C2PFx, 13C2PFUnDA, 13C2PFDoDA, and 18O2PFHxA were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Oasis weak anion exchange (WAX; Oasis WAX C18, 100 mg, 6 mL, Waters Corp., Milford, MA, USA) was activated with 4 mL of 0.1% ammonia—methanol solution, methanol, and Milli-Q water before loading samples. A water sample of 500 mL was loaded into the column at a rate of 2–3 drops/s. Milli-Q water was used during the course of the entire experiment. The column was then leached with 4 mL of 25 mmol/L acetate buffer solution (pH 4) to remove impurities, and then centrifuged to remove water. The analytes were eluted with 4 mL of methanol and 4 mL of 0.1% ammonia—methanol solution. The volume of eluent was reduced to 1 mL using high purity nitrogen gas to ready the eluent for the LC-MS/MS measurement.

The soil samples were air-dried and milled through a 60 mesh sieve. A 1 g soil sample was weighed and transferred to a 50 mL PP centrifuge tube, and 5 mL of methanol was added. The solution was mixed homogeneously by ultrasonic mixing for 8 min at 35 °C and centrifuged for 30 min at 2000 rpm. The supernatant was transferred to the new centrifuge tube and this process was repeated in triplicate. The total volume of the combined supernatant was 15 mL, which was then reduced to 1–2 mL under a gentle stream of high purity nitrogen. The subsequent cleanup steps were the same as in the water sample processing. Finally, the eluent was evaporated to 0.5 mL by high-purity nitrogen and passed through a 0.22 μm organic phase nylon syringe filter (ANPEL Laboratory Technologies (Shanghai) Inc., China), to ready the eluent for the LC-MS/MS measurement.

2.3. Pretreatment and purification

Soil and water samples were analyzed for 17 PFCs, including PFOS, PFHxS, PFBS, PFOA, PFPeA, PFHpA, PFDoA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, and PFOS. Extraction of PFCs from soil samples was accomplished using a method similar to the authors’ previously published method (Lu et al., 2011). The water samples were extracted using the solid phase extraction method. An Oasis WAX column (6 cm, 150 mg) was activated with 4 mL of 0.1% ammonia—methanol solution, methanol, and Milli-Q water before loading samples. A water sample of 500 mL was loaded into the column at a rate of 2–3 drops/s. Milli-Q water was used during the course of the entire experiment. The column was then leached with 4 mL of 25 mmol/L acetate buffer solution (pH 4) to remove impurities, and then centrifuged to remove water. The analytical were eluted with 4 mL of methanol and 4 mL of 0.1% ammonia—methanol solution. The volume of eluent was reduced to 1 mL using high purity nitrogen gas to ready the eluent for the LC-MS/MS measurement.

The soil samples were air-dried and milled through a 60 mesh sieve. A 1 g soil sample was weighed and transferred to a 50 mL PP centrifuge tube, and 5 mL of methanol was added. The solution was mixed homogeneously by ultrasonic mixing for 8 min at 35 °C and centrifuged for 30 min at 2000 rpm. The supernatant was transferred to the new centrifuge tube and this process was repeated in triplicate. The total volume of the combined supernatant was 15 mL, which was then reduced to 1–2 mL under a gentle stream of high purity nitrogen. The subsequent cleanup steps were the same as in the water sample processing. Finally, the eluent was evaporated to 0.5 mL by high-purity nitrogen and passed through a 0.22 μm organic phase nylon syringe filter (ANPEL Laboratory Technologies (Shanghai) Inc., China), to ready the eluent for the LC-MS/MS measurement.

2.4. Instrumental quantification

PFCs were determined by a tandem mass spectrometer (API 4000, Applied Biosystems Inc., Framingham, MA, USA) coupled with HPLC (Agilent Technologies 1200) operated in the electrospray negative ion mode. The LC column used was an RSpak JJ-50 2D ion exchange column (2.0 mm × 150 mm, 5 μm; Shodex, Japan). The injection volume was 10 μL. The analysts were eluted with 50 mmol/L ammonium acetate—methanol mixed solution (volume ratio 2:8) in isocratic elution mode at a flow rate of 300 μL/min for 20 min. The column temperature was 40 °C. The electrospray ionization voltage was 4000 V, using negative mode ion source, and the ion source temperature was 350 °C; the air curtain air pressure was 1.0 MPa, the atomizing air pressure 5.0 MPa, the desolvation gas pressure 5.0 MPa, the cone gas flow rate 20 L/h, and the collision gas pressure 1.0 MPa. The multiple reaction monitoring (MRM) mode was used. Calibration curves for the instrument were prepared with a series of seven concentrations at 0, 2, 10, 50, 200, 1000, 5000, and 25 000 pg mL−1. The standard deviation of every point was less than 20%. The instrumental response of target analytes was confirmed for quantification using individual chromatograms.
2.5. Quality assurance and quality control (QA/QC)

To achieve lower detection limits, all of the accessible PTFE and fluoropolymer materials in the instruments and apparatus were replaced with materials made of polyetheretherketones (PEEK) to minimize a background signal caused by contamination. Procedure and travel blanks for water were collected. The recovery test was carried out using both surrogates and native standard chemicals. If the recovery exceeded the acceptable range (65\%-125\%), samples were reanalyzed. Matrix recoveries were also conducted by adding surrogates and native standard chemicals to real samples (Table 1). Quantitative responses according to the amount of standards added were evaluated. The concentrations of analytes were calculated using an external calibration curve.

Blanks and recoveries were extracted in duplicate for every twelfth sample to ensure stable repeatability. When repeatability was realized, the peak area was greater than the procedure blank, and signal/noise ratio (S/N) was \(> 3 \), then the lowest concentration of the target analyte was defined as the LOD of the method.

3. Results and discussion

3.1. Soils

The mean total PFC concentrations in soil from eight rural areas (Changshu, Taicang, Yangzhou, Yancheng, Huai’an, Tai’an, Liaocheng, and Tianjin) and one urban area (Suzhou) in eastern China are summarized in Fig. 2. Detailed concentrations of individual PFC compounds are provided in Table S2. Seventeen PFCs (C4—C10) were detected in all samples with detection rates of most compounds \(> 80\% \). In general, PFOA and PFUnDA were the most prominent PFCs detected in soil, at a rate of 100\%, followed by PFBA and PFDA. The most frequently detected perfluoroalkane sulfonate (PFSA) was PFOS, while PFHxS and PFBS were almost undetectable.

The total PFC concentrations (\(\sum PFCs \)) in soils ranged from 0.34 to 65.8 ng/g dw (dry weight). Changshu was the most contaminated region in the study area, with PFOA as the predominant compound accounting for 73\% of total PFCs, which may be attributable to the fluorine-related industries in the Changshu Fluorochemical Industrial Park (Wei et al., 2013). The composition of PFCs in soil shifted gradually with a greater distance from the industrial park, with more PFBA, PFNA, and PFOS detected (Fig. 3(a)). The influence of the fluorine-related industries on the rural soils extended to a distance of 11 km judging from the changes in PFC composition.

Except for samples from Changshu, PFCs were detected at low levels in the rural areas where PFOA, PFDA, and PFBA were the most abundant perfluorocarboxylic acids (PFCAs) in the soils and PFOS was the most abundant PFSA (Fig. 3(a)). The lowest \(\sum PFCs \) was found in Huai’an. These levels are well below the health-based guidelines for PFCs in soil proposed by the U.S. Environmental Protection Agency (6 mg/kg for PFOS and 16 mg/kg for PFOA) (MDH, 2014).

Except for Tianjin, the PFC concentration levels in soil were generally high in the Yangtze River Delta region, and generally low in the Huai River watershed area (Yancheng and Huai’an) and Yellow River watershed area (Tai’an and Liaocheng), with a decreasing trend from south to north between the Yangtze River and the Yellow River. Compared to the Yangtze River Delta and Tianjin areas, the Huai River and Yellow River watershed areas are less populated and industrialized. Therefore they may be regarded as typical rural areas.

PFOcDA, PFHxADA, PFHxS, PFDS, and PFBS were not detected in most areas except for Changshu and Tianjin. Compared with reported data of PFCs in soil from other parts of China, the PFOA concentrations in soil from Changshgu was the highest, exceeding...
Table 1 Parameters of mass spectrometry, recoveries, and the limits of detection (LODs) for individual PFCs in water (ng/L) and soil (ng/g) samples.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Precursor ion (m/z)</th>
<th>Product ions (m/z)</th>
<th>Declustering potential (DP/V)</th>
<th>Entrance potential (EP/V)</th>
<th>Collision energy (eV)</th>
<th>Collision cell exit potential (CXP/V)</th>
<th>LOD (ng g⁻¹)</th>
<th>Average recovery (%)</th>
<th>Matrix recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFBA</td>
<td>212.8</td>
<td>168.9</td>
<td>26</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>0.1</td>
<td>0.01</td>
<td>92.0</td>
</tr>
<tr>
<td>PFFeA</td>
<td>262.8</td>
<td>218.9</td>
<td>30</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>0.2</td>
<td>0.005</td>
<td>91.5</td>
</tr>
<tr>
<td>PFHxA</td>
<td>313</td>
<td>268.9</td>
<td>35</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>0.2</td>
<td>0.005</td>
<td>89.2</td>
</tr>
<tr>
<td>PFHpA</td>
<td>363</td>
<td>319</td>
<td>40</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>90.6</td>
</tr>
<tr>
<td>PFOA</td>
<td>412.8</td>
<td>369</td>
<td>43</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>0.5</td>
<td>0.005</td>
<td>85.9</td>
</tr>
<tr>
<td>PFNA</td>
<td>462.8</td>
<td>419</td>
<td>40</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>0.1</td>
<td>0.001</td>
<td>96.1</td>
</tr>
<tr>
<td>PFDA</td>
<td>512.8</td>
<td>469</td>
<td>45</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>0.5</td>
<td>0.005</td>
<td>85.3</td>
</tr>
<tr>
<td>PFUnDA</td>
<td>562.8</td>
<td>519</td>
<td>45</td>
<td>10</td>
<td>18</td>
<td>22</td>
<td>0.2</td>
<td>0.01</td>
<td>82.1</td>
</tr>
<tr>
<td>PFDoDA</td>
<td>612.8</td>
<td>569</td>
<td>50</td>
<td>10</td>
<td>18</td>
<td>30</td>
<td>0.5</td>
<td>0.01</td>
<td>67.3</td>
</tr>
<tr>
<td>PFTrDA</td>
<td>662.8</td>
<td>619</td>
<td>34</td>
<td>10</td>
<td>18</td>
<td>25</td>
<td>0.5</td>
<td>0.01</td>
<td>41.5</td>
</tr>
<tr>
<td>PFTeDA</td>
<td>712.8</td>
<td>669</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>0.2</td>
<td>0.01</td>
<td>28.3</td>
</tr>
<tr>
<td>PFHxDA</td>
<td>813</td>
<td>769</td>
<td>45</td>
<td>10</td>
<td>20</td>
<td>35</td>
<td>0.2</td>
<td>0.01</td>
<td>86.6</td>
</tr>
<tr>
<td>PFDoDA</td>
<td>912.8</td>
<td>869</td>
<td>48</td>
<td>10</td>
<td>22</td>
<td>36</td>
<td>0.2</td>
<td>0.01</td>
<td>58.0</td>
</tr>
<tr>
<td>PFBS</td>
<td>298.8</td>
<td>80</td>
<td>70</td>
<td>10</td>
<td>55</td>
<td>10</td>
<td>0.5</td>
<td>0.005</td>
<td>93.5</td>
</tr>
<tr>
<td>PFHxS</td>
<td>398.8</td>
<td>80</td>
<td>90</td>
<td>10</td>
<td>75</td>
<td>10</td>
<td>0.5</td>
<td>0.005</td>
<td>95.8</td>
</tr>
<tr>
<td>PFOS</td>
<td>499</td>
<td>80</td>
<td>90</td>
<td>10</td>
<td>90</td>
<td>8</td>
<td>0.5</td>
<td>0.005</td>
<td>96.1</td>
</tr>
<tr>
<td>13C₂PFBA</td>
<td>315</td>
<td>272</td>
<td>40</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>75.7</td>
</tr>
<tr>
<td>13C₂PFPOA</td>
<td>417</td>
<td>372</td>
<td>40</td>
<td>10</td>
<td>14</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>75.7</td>
</tr>
<tr>
<td>13C₂PFNA</td>
<td>468</td>
<td>423</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>82.1</td>
</tr>
<tr>
<td>13C₂PFDA</td>
<td>515</td>
<td>470</td>
<td>50</td>
<td>10</td>
<td>15</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>82.1</td>
</tr>
<tr>
<td>13C₂PFUnDA</td>
<td>565</td>
<td>520</td>
<td>50</td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>62.7</td>
</tr>
<tr>
<td>13C₂PFDoDA</td>
<td>615</td>
<td>570</td>
<td>50</td>
<td>10</td>
<td>17</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>59.0</td>
</tr>
<tr>
<td>18F₂PFHxS</td>
<td>403</td>
<td>103</td>
<td>100</td>
<td>10</td>
<td>55</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>39.8</td>
</tr>
<tr>
<td>19F₂PFHXS</td>
<td>503</td>
<td>99</td>
<td>100</td>
<td>10</td>
<td>70</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>87.0</td>
</tr>
</tbody>
</table>

those of Shanghai, Beijing, and Tianjin (Pan et al., 2011; Wang et al., 2012a,b, 2011; Li et al., 2010; T.Y. Wang et al., 2011). Although higher levels were found in Tianjin, the nature of the contamination differs from Changshu. Tianjin is a metropolitan industrial city and one of the most severely contaminated areas in China. PFDA, PFBS, PFHxS were detected in the Tianjin rural area, and a strong WWTP influence on the surface waters in Tianjin was suggested (Pan et al., 2011; Wang et al., 2012a,b).

In several soil samples, higher levels of PFOA than PFOS were observed, which is contrary to reports of soils with higher PFOS than PFOA concentrations, such as soils in the Pearl River Delta (Hu et al., 2013). It has been reported that the global level of PFOS in soil was significantly higher than those in Changshu and Tianjin, the nature of the contamination differs from Changshu. Tianjin is a metropolitan industrial city and one of the most severely contaminated areas in China. PFDA, PFBS, PFHxS were detected in the Tianjin rural area, and a strong WWTP influence on the surface waters in Tianjin was suggested (Pan et al., 2011; Wang et al., 2012a,b).

The total PFC concentrations in the groundwater samples ranged from 7.0 to 489 ng/L. The most contaminated surface water observed was from Changshu. Except for Changshu and Tianjin, the PFC concentration levels generally showed a decreasing trend from south to north. Compared with PFC levels in surface waters reported in other parts of eastern China, PFC levels in the rural areas except for Changshu and Tianjin, the PFC concentration levels generally showed a decreasing trend from south to north. Compared with PFC levels in surface waters reported in other parts of eastern China, PFC levels in the rural areas except for Changshu and Tianjin were significantly higher than those in certain rural areas at Changshu even the later is located nearer to Suzhou.

3.3. Groundwater

The mean total PFC concentrations in groundwater samples from six rural areas in eastern China are shown in Fig. 2(c). Detailed concentrations of individual PFC compounds are provided in Table S4. In general, the detection rates of compounds were low in groundwater compared to surface waters. C4–C10 PFCs were detected in all samples. The most detected PFCAs in groundwater were PFBA and PFOA, followed by PFNA, PFHpA, and PFHxA. The most detected PFAS was PFBS, followed by PFOS and PFHxS. PFDS was almost undetectable. The number of detected PFC compounds in groundwater samples was much smaller compared to soil and surface water samples, and the long-chain PFCAs were almost undetectable.

The total PFC concentrations in the groundwater samples ranged from 5.3 to 615 ng/L, with the highest concentration...
occurring in the fluorochemical industrial area. Except for Changshu and Tianjin, PFC concentration levels in groundwater were generally higher in the Yangtze River Delta region and showed a decreasing trend from south to north as follows: Changshu (269.1 ng/L) > Yangzhou (8.5 ng/L) > Yancheng (3.57 ng/L) > Tai’an (1.68 ng/L) > Liaocheng (0.45 ng/L) > Tianjin (0.20 ng/L) in 2014 (Fig. 2(c)).

PFC concentrations in groundwater were significantly lower than those in surface waters except for Changshu; PFCAs in groundwater were twofold higher than in surface water in Changshu rural areas, whereas PFSA in groundwater were at levels similar to the surface water. Changshu is located in the Yangtze River Delta with a densely distributed river network and higher water tables in the groundwater aquifers. Therefore, river water may penetrate into the aquifers. The proportion of PFOA increases and PFOS and PFHxA decrease from the surface water to the groundwater. In addition, the short-chain C4 compound PFBS was detected in surface water although it was significantly less present in soil and groundwater samples. Due to low toxicity, PFBS has been used by the fluorochemical industry as a replacement for PFOS in production; it is also a degradation product of PFCs. It has been reported that PFBS exists in effluent from many WWTPs in Europe (Møller et al., 2009).

![Fig. 2. Geographical distributions of the mean total concentrations of PFCs in (a) surface soil, (b) surface water, and (c) groundwater in rural areas of eastern China.](image)

![Fig. 3. Geographical distributions of concentrations of individual PFCs in (a) surface soil, (b) surface water, and (c) groundwater in rural areas of eastern China.](image)
3.4. The influence of fluorochemical industries on the surrounding areas

The major components in wastewater effluent discharged from Changshu Fluorochemical Industrial Park were found to be PFOS (99%), and small amount of PFHxS and PFPeA (Wei et al., 2013) (Fig. 3(b)). However, in rural areas of Changshu, the proportions of compounds other than PFOS detected in surface water increased with distance from the industrial park (Fig. 3(b)), indicating an increasing contribution of PFC contamination from other sources (for example, domestic sewers and atmospheric precipitation).

Although the C8 compound PFOS was dominant in soils in the Changshu fluorochemical industrial area, proportions of C9 compound PFNA increased in the surrounding rural areas at a distance from the industrial park. It has been suggested that the increase in C9 compounds may reflect atmospheric transport and degradation of relatively volatile precursors of PFCs such as 8:2, 10:2, and 12:2 fluorinated telomer alcohols (FTOHs) (Armitage et al., 2009). Therefore, the PFCs in the environmental media at a distance from the fluorochemical industrial park may partly result from atmospheric sources associated with direct air emissions from the manufacturing plants.

Compositions of PFCs in rainwater samples collected at the fluorochemical industrial park and the neighboring Suzhou and Taicang are shown in Fig. 4(a). For comparison, compositions of PFC compounds in rainwater samples collected in Beijing are also shown in Fig. 4(a). The compositions of PFC compounds in rainwater samples from the adjacent areas were similar to the composition of rainwater at the fluoro chemical industry park but differed significantly from those in Beijing, suggesting the strong influence of the fluoro chemical industrial park on the surrounding areas through atmospheric transport of either PFC compounds or their precursors. It also can be seen from Fig. 4(b) that PFNA/PFOA, PFBA/PFOA, and PFHpA/PFOA ratios in rain increased from the fluorochemical plant area to the surrounding Taihang rural area and Suzhou urban area, and were higher in Beijing.

3.5. Source analysis

The composition of PFCs in samples may provide information on pollution sources to some extent. Some indicators, such as ratios of PFOS to PFOA and PFHxA to PFOA, have been employed to identify potential sources of PFCs (Simcik et al., 2005; So et al., 2004). Atmospheric precipitation has relatively higher PFHpA concentrations than surface water and, thus, the PFHpA/PFOA ratio has been used as a tracer for atmospheric precipitation sources (Simcik et al., 2005).

PFCs in sewage from rural areas may originate from kitchen and toilet sewers, as well as the waste from domestic animal production. The former includes food wrappers, non-stick pans, and food of animal origin, and the latter may include cosmetics, pharmaceuticals, and human/animal urine/feces. The short-chain compound PFBA, which is not easily degradable and has migration capability, may be a degradation product of other PFC compounds, as evidenced by the increasing detection rate in recent years in both wastewater and atmospheric precipitation (Yao et al., 2014; Taniyasu et al., 2013). Unlike PFOS and PFOA, PFBA does not easily bioaccumulate and may be quickly eliminated (Minnesota Department of Health, 2015). Human and animal feces are often directly discharged into surface waters in rural areas of China without any treatment. Perez et al. have reported that the PFBA content in urine samples from 30 people in Barcelona, Spain, measured up to 483.5 ng/L (Perez et al., 2012).

Atmospheric precipitation also contains more volatile degradation products such as fluorotelomer alcohols. PFNA can be a degradation product of fluorotelomer alcohols, as well as a raw material used to manufacture 8:2 fluorotelomer alcohol (OECD, 2007). PFBA and PFHpA may reflect human and livestock excretion (therefore serving as an indirect index of domestic and farm sewage) and atmospheric precipitation sources, respectively, and PFNA reflects the sources of degradation of fluorotelomer alcohols and other industrial sources; thus, this relates a ratio—ratio mixing inverse problem in a binary mixing model for (Sohn, 2005). Based on this concept, the ratios of PFBA/PFOA and PFNA/PFOA versus PFHpA/PFOA were plotted in Fig. 5 for the rural and urban areas surrounding the fluorochemical industrial park. Since PFOA is ubiquitous in the aquatic environment, the concentration of each compound was normalized by PFOA concentration to highlight the changes of these indicative compounds relative to PFOA. The two plots are shown in Fig. 5.

Except for two Changshu rural area sampling sites near fluorochemical plants and two Suzhou urban sampling sites, the two plots generally show good linear correlations for the surface water samples eastern China rural areas with the correlation coefficients of R = 0.76 and R = 0.84 (p < 0.05), respectively. These linear correlations may be understood as a mutual dilution of two-end members, i.e., rural sewage and atmospheric precipitation carrying PFCs and precursors. In addition, the linear correlation between PFNA/PFOA and PFHpA/PFOA ratios can be regarded as indirect proof of PFNA in the atmosphere being a fluorotelomer.

![Fig. 4. (a) Comparisons of compositions of PFCs in rainwater at the fluorochemical plant, the surrounding Taicang rural area and Suzhou urban area, and Beijing; (b) PFNA/PFOA, PFBA/PFOA, and PFHpA/PFOA ratios in rainwater from the fluorochemical plant, the surrounding Taicang rural area, Suzhou urban area, and Beijing urban area.](https://example.com/fig4.png)
alcohol degradation product. The abnormal data points in the plots in the plot may indicate sources other than rural sewage and atmospheric precipitation.

4. Conclusions

(1) PFCs were widely detected, although at low levels, in soil from rural areas in eastern China. Except for samples from Changshu areas, PFCs were detected at low levels in rural areas. PFOA, PFDA, and PFBA were the most abundant PFCAs in the soils and PFOS was the most abundant PFSA. PFC levels in the Changshu area can be attributed to effects of the nearby fluorocarboxylic industry along with contributions from household and farming sewers and atmospheric precipitation. Except for the Changshu and Tianjin areas, PFC levels in soils decreased from south to north.

(2) PFOA, PFHxA, and PFBA were the predominant compounds in the surface waters and groundwater in the study area. The PFC level was highest in Changshu, measuring four to eight times higher than levels in other areas studied. Except for the Changshu and Tianjin areas, the PFC concentration levels were generally higher in the sections south of the Yangtze River than sections in the north.

(3) The detection rates of long-chain PFC compounds were generally lower in groundwater samples than in surface water samples. The levels in groundwater followed an increasing trend from south to north, suggesting a decreasing contribution of atmospheric precipitation. The PFC level in groundwater in the Changshu rural area was higher than levels in the surface water of the same area, the cause of which needs further investigation.

(4) The PFBA/PFOA and PFNA/PFOA ratios versus the PFHpA/PFOA ratio in the surface water samples in eastern China rural areas and the Suzhou urban area.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.envpol.2015.12.024.

References

Organisation for Economic Co-operation and Development (OECD), 2007. Lists of PFCs, PFAS, PFOA, PFCA, Related Compounds and Chemicals that May Degrade to PFCA (Environment Directorate-Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides, and Biotechnology, Paris).

Rebecca, R., 2001. Evidence of toxic effects and environmental impacts has sent researchers scrambling to obtain more data. Environ. Sci. Technol. 34, 154A–161A.

Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis. Water Res. 45 (15), 4483–4490.